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3 Ways to Test

Frisbee

Interactive, or manual testing

A human execute tests one-by-one, without test scripts.

Automated testing

A framework executes test scripts written by a human.

Continuous testing

Applies the principles of automated testing in a scaled,
continuous manner, to achieve the most reliable test
coverage, at every stage of development lifecycle.



Functional Testing S

System
Behavior

User Requirements

Ensure that

TSSO BRI Today's solution ... Continuous Testing @
properly. :

Improved test efficiency

Lower maintenance costs

Minimal manual intervention

Maximum test coverage

Reusability of code

Early in the software delivery process
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Non-Functional Testing

Frisbee

Operating System Assert
Condition Behavior Execution

User Expectations

Ensure that

_——

Today's solution ... Manual testing %@r@ fun;:clions work
5 | efficiently.

x Hardcoded APIs / dirs/ nodes /...

x Biased Testing

x Dependence on shared environments
x  Minimal support for fault injection

x  Manual collection of analysis results
> Lateinthe software delivery process




Streamline Testing

Frisbee

Non-Functional

Unit Testing ﬁ f. Performance
Integration Testing Scalability
APl Testing E § Reliability




What Kubernetes does for testing ...

Frisbee

kubernetes

Kubernetes brings five critical things to testers:

Cheap disposable and portable environments

Unambiguous communication between testers and developers
Seamless Integration with Cl tools

Experiments can scale from a desktop to hundreds of machines
Direct access to distributed logs

> Kubernetes is great for running unbiased non-functional testing



... But writing tests is complex!!

Frisbee

kubernetes

Orchestrate workflows with logical dependencies.

Get into a complicated failure state quickly (Chaos Engineering)

Easily observe the global state of the SUT (system & app metrics)
Define finite-horizon experiments (when has a test passed or failed ?).

Testers focus on the testing mechanism rather than the test case !!!



Frisbee

Frisbee

Frisbee is a Kubernetes platform for exploring, testing,
and benchmarking distributed applications.
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YAML Language to Integration with

describe testing \\ Real-time dashboards
Debug Tests
Scalable engine to automate the

execution of test-cases

Write Tests




Architecture
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Templates: libraries of
frequently-used specifications.

3
2
Workflow: list of actions that

specify what will happen
throughout the test.

Controllers: parse templates
and run workflows.
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Testing Workflow

Frisbee

Action Description
Service: Create an instance of a templated service.

Cluster: Create multiple services that run in a shared context.

Chaos: Inject failures to simulate abnormal behaviors.

s Templates |-

| DB

i Coldstart Lo;dKeys

| =) @Y 2™

i &=, 2l [

: Run

Queries

Frisbee Telemetry

_________________________________________________________________________________________________________________
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Assert: Object State

Frisbee

Object State assertions checks the phase of an object.
Phase: a simple, high-level summary of where the object is in its lifecycle.

Pending: The object has been received by Kubernetes, but one or more of jobs
has not been set up and made ready to run.

Running: All of the jobs in the object have been created. At least one job is
still running, or is in the process of starting or restarting.

Success: All jobs have terminated in success, and will not be restarted.

Failed: All jobs have terminated, and at least one jobs has terminated in
failure.



Assert: SLA

Frisbee

SLA assertions check whether KPI metrics are within expected limits.

" Prometheus / Grafana Real Time
Dashboards
[ @ ¥ &|:™
Alerts
Webhook

R : Frisbee
L Controller




Testplans




Performance

Frisbee
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Scalability

Frisbee

v Cluster
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Availability
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Frisbee
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Saturation

Frisbee
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Emulation of loT Environments

Frisbee

G Tier > Tier > Tier
J Things @ Edge Q " Cloud

Thing Gateway Cloud
Hololens Edge 5100 Default

Thing Gateway Cloud
Hololens Edge 5100 Default
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Looking for Collaborators

Frisbee

Devops
e Testing workflows
e Systems for testing
e Tutorials

Developers
e (ontrollers
e Helm Installation

Researchers
e Many ideas floating around

Source available at

https://github.com/CARV-ICS-FORTH/frisbee



https://github.com/CARV-ICS-FORTH/frisbee
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Frisbee Primitives
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Templates

Frisbee

Implement skeletons, exposing a bunch of parameters where dynamic
data will be injected to create multiple variants of a specification.

"loader":
(inputs: T y s ° Sane defaults
,  parameters: : ® Placeholders for user data
! server: localhost
\ port: "6379" )
Spec: T
(agents: T ) a ° Sidecar containers.
\___telemetry: [ sysmon/container, ycsbmon/client 1! e Out-of-the-box monitoring
container:
name: app
image: aylei/go-ycsb:20201029
command:
addr={{.Inputs.Parameters.server}}:{{.Inputs.Parameters.port}} i S

mode={{.Inputs.Parameters.mode}}
recordcount={{.Inputs.Parameters.recordcount}}
offset={{.Inputs.Parameters.offset}}

Embedded scripting:
e Run functions on Inputs

F

S



Service

Frisbee

Create an instance of a templated service.

Type of Action

________________________

-. 'action: Service | Action Identifier

__________________________________________

__________________________________________ ; Dependencies to other Actions (DAG)

{fromTemplate: E
: templateRef redis/slave ,

___________________________________

Pointer to the Template skeleton

: { master: .service.master.any } ! Parameters for the skeleton



Cluster

Frisbee
Create multiple services that run in a shared context.
- action: Cluster
name: "loaders"
depends: { running: [ master ], success: [boot] }
cluster:
templateRef: ycsb-redis/loader
4o o= J
. - { server: .service.master.any, recordcount: "100000000", offset: "0" } i
0 { server: .service.master.any, recordcount: "100000000", offset: "100000000" } :—) Multlpl_e Services Wlth
:\ - { server: .service.master.any, recordcount: "100000000", offset: "200000000" } ., 2
i Different parameters.
failedServices: 3
kchedule:

\_cron: "@every 2m"

Interval between the
creation of services.
26 (see changing patterns)




27

ChaOS Frisbee

Inject failures to simulate abnormal behaviors.

- action: Chaos
name: partitioni
depends: { running: [ master, slave ], success: [ partition@ ], after: "ém" }

chaos:
:\__t_Ysz_f_t_Ef"_r_t_if_if’_"______________,: Specify the fault.
arcticion:
G Current: kill, partition

_________________________________________________

Select the Chaos target
Select the Chaos duration.

After this time, the injected
fault will be retracted.



