INSTITUTE OF COMPUTER SCIENCE

Frisbee

Streamline non-functional testing on Kubernetes

Fotis Nikolaidis'
Antony Chazapis!
Manolis Marazakis'
Angelos Bilas!

SE

TFoundation of Research and Technology Hellas (FORTH), Greece AT Come

3 Ways to Test

Frisbee

Interactive, or manual testing

A human execute tests one-by-one, without test scripts.

Automated testing

A framework executes test scripts written by a human.

Continuous testing

Applies the principles of automated testing in a scaled,
continuous manner, to achieve the most reliable test
coverage, at every stage of development lifecycle.

Functional Testing S

System
Behavior

User Requirements

Ensure that

TSSO BRI Today's solution ... Continuous Testing @
properly. :

Improved test efficiency

Lower maintenance costs

Minimal manual intervention

Maximum test coverage

Reusability of code

Early in the software delivery process

LN NN

Non-Functional Testing

Frisbee

Operating System Assert
Condition Behavior Execution

User Expectations

Ensure that

_——

Today's solution ... Manual testing %@r@ fun;:clions work
5 | efficiently.

x Hardcoded APIs / dirs/ nodes /...

x Biased Testing

x Dependence on shared environments
x Minimal support for fault injection

x Manual collection of analysis results
> Lateinthe software delivery process

Streamline Testing

Frisbee

Non-Functional

Unit Testing ﬁ f. Performance
Integration Testing Scalability
APl Testing E § Reliability

What Kubernetes does for testing ...

Frisbee

kubernetes

Kubernetes brings five critical things to testers:

Cheap disposable and portable environments

Unambiguous communication between testers and developers
Seamless Integration with Cl tools

Experiments can scale from a desktop to hundreds of machines
Direct access to distributed logs

> Kubernetes is great for running unbiased non-functional testing

... But writing tests is complex!!

Frisbee

kubernetes

Orchestrate workflows with logical dependencies.

Get into a complicated failure state quickly (Chaos Engineering)

Easily observe the global state of the SUT (system & app metrics)
Define finite-horizon experiments (when has a test passed or failed ?).

Testers focus on the testing mechanism rather than the test case !!!

Frisbee

Frisbee

Frisbee is a Kubernetes platform for exploring, testing,
and benchmarking distributed applications.

-

» Frisbee <

// o) \\
// ' AN _ _
YAML Language to Integration with

describe testing \\ Real-time dashboards
Debug Tests
Scalable engine to automate the

execution of test-cases

Write Tests

Architecture

Frisbee

Deployment ;
|
|

Templates |
I
I
|

—

|

|

|
) Workfl
Orkriow : ‘@’
:

Evaluation

Analysis

N

!

CRs (Yaml Files)]

Frisbee
Operator

[Kubernetes
[CR Definitions] Controllers

Monitor
Stack

Kubernetes API

Commands \L

\ / Cluster

Overlay Networks

/ Cluster
1
. s

Frisbee
Agents

. App
: K Container

ya

Pod

App .
Container

o)

--

13y B suonejouuy

AN AT
RN
(NN
(I[N AT

Templates: libraries of
frequently-used specifications.

3
2
Workflow: list of actions that

specify what will happen
throughout the test.

Controllers: parse templates
and run workflows.

10

Testing Workflow

Frisbee

Action Description
Service: Create an instance of a templated service.

Cluster: Create multiple services that run in a shared context.

Chaos: Inject failures to simulate abnormal behaviors.

s Templates |-

| DB

i Coldstart Lo;dKeys

| =) @Y 2™

i &=, 2l [

: Run

Queries

Frisbee Telemetry

11

Assert: Object State

Frisbee

Object State assertions checks the phase of an object.
Phase: a simple, high-level summary of where the object is in its lifecycle.

Pending: The object has been received by Kubernetes, but one or more of jobs
has not been set up and made ready to run.

Running: All of the jobs in the object have been created. At least one job is
still running, or is in the process of starting or restarting.

Success: All jobs have terminated in success, and will not be restarted.

Failed: All jobs have terminated, and at least one jobs has terminated in
failure.

Assert: SLA

Frisbee

SLA assertions check whether KPI metrics are within expected limits.

" Prometheus / Grafana Real Time
Dashboards
[@ ¥ &|:™
Alerts
Webhook

R : Frisbee
L Controller

Testplans

Performance

Frisbee

Real-time Clients (Total Ops) Real-Time Operations Historical Operations

Total Operations (by Client)

19:4400

= loader

eloader

Total Throughput

Average 108K req/s

Max Latency

t
19:41:00 19:4

Scalability

Frisbee

v Cluster

Store size Available size Capacity size
La Last *

workers-0 410M8 workers-0 == workers-0 256 GB

workers-1 169 MB Ti 4 workers-1 == workers-1 256 GB

workers-10 33.0MB workers-10 = workers-10 256 GB

workers-100 33.0 MB workers-100 == workers-100 256 GB

workers-101 83.9 MB workers-101 workers-101 256 GB

workers-102 33.0 MB , - workers-102 == workers-102 256 GB
e

workers-103 69.8 MB s 5 workers-103 == workers-103 256 GB

workers-104 33.0 MB Pumm— workers-104 workers-104 256 GB

workers-105 328 MB [— workers-105 workers-105 256 GB

TR

workers-106 33.0 MB workers-106 workers-106 256 GB

CPU

workers-121 1.02% La: Max
= == master 138MiB 139 MiB
2.05%

workers-122
workers-123 1.22% == workers-0 602MiB 639 MiB
workers-124 4.40% o7y \ workers-1 461 MiB 544 MiB

orkers-125 1,039 d S workers-10 316 MiB 316 MiB
workers-125 1 3

workers-100 306 MiB 306 MiB

workers-126 1 % 1.17%
workers-101 313 MiB 584 M
workers-127 1.21% orkers-10 3MiB 584 MiB
A workers-102 306 MiB 306 MiB
workers-128 6 1.06% _ -—
workers-129 1.12% 1.19% - - workers-103 332 MiB 591 MiB

—I—

ég

workers-104 307 MiB 582 MiB

workers-13 1.20%

=)
8

workers-105 343MiB 442 MiB

10 utilization

Max Last* Max

= master - /dev/sda3 3.84e-8% 0.00000723% . workers-Q-write 0.840B/s 2.10 MB/s

0.00000800% ; = workers-0-/dev/sda3 5.22e-8% 0.00000701% workers-1-writ 0B/s 2.08 MB/s
re=rtl orkers-1 - /dev/sda3 5.81e-8% 0.00000674% T—— workers-10-wi 0B/s 0B/s

0.00000600% N vorkers-10 - /dev/sda3 3.75e-8% 0.00000723% ! workers-100 0B/s 0.483B/s

’ vorkers-100 - /dev/sda3 3.76e-8% 0.00000730% —_— workers-10 0B/s 141B/s
i vorkers-101 - /dev/sda3 9.28e-8% 0.00000862% workers-102-write /s 0483B/s
vorkers-102 - /dev/sda3 4.88e-8% 0.00000764% 5MB/s i 1208/s 26.08/s

vorkers-103 - /dev/sda3 5.3e-8% 0.00000683% ' / 0.483 B/s

0.00000200%

vorkers-104 - /dev 5.71e-8% 0.00000667%

8.94Kreq/s 1.20Kreq/s

5.02K req/s

5
B
rlpv

um

Total Throughput
Max Latency

i3
k]
S
=
5
P
2
S
S
g
2
(=]
]
5
2

ity

1C

== Average
== Average == 99th == 99.9th == 99.99th

7.50K req/s
2.50K req/s
Ops

Elast

Availability

60M req/s

50M reg/s

40M req/s

30M reg/s

20M req/s

10M reg/s

Frisbee

loaders-0

Total Clients

0reg/s

== |NSERT
== |NSERT_ERROR

== Total

v Operations

Average Throughput

22:58:00

22:59:00

230000 2301:00

! |y
5.82M req/s
28.3M req/s

28.0M req/s

No data in re

23:02:00 23:03:00
Max Min

6.89M req/s 80.6K reg/s
50.4M req/s 4req/s

57.3Mreq/s 80.6Kreq/s

Average Latency

22:54:00

INSERT
INSERT_ERROR

Average

22:57:00 22:58:00

3.78K req/s
15.3K req/s
8.63K req/s

2301:00 23:02:00

Mean Max
8.06K req/s
21.5K req/s
122K reg/s

23:03:00
Min

1.56K req/s &
= INSERT 2ms
= INSERT_ERROR

0.280 req/s

2.94K req/s 494 ms

Saturation

Frisbee

Total Request (Reg /s)

14:45 = “14:50 = = 1455 : 15:00

o | Throughput o é TaHLatendleer
Per Client “ Client (ms) ‘
TKreq/s ‘ (Req/S) ams |

30 m:
reg/s
req/s 20 m:
K req/ 10 m:
4:45 450 455 500 Ops | s ~ r - -
14:45 14:50 14:55 15:00

Emulation of loT Environments

Frisbee

G Tier > Tier > Tier
J Things @ Edge Q " Cloud

Thing Gateway Cloud
Hololens Edge 5100 Default

Thing Gateway Cloud
Hololens Edge 5100 Default

. .
. .
............
.............

......................

19

15

Looking for Collaborators

Frisbee

Devops
e Testing workflows
e Systems for testing
e Tutorials

Developers
e (ontrollers
e Helm Installation

Researchers
e Many ideas floating around

Source available at

https://github.com/CARV-ICS-FORTH/frisbee

https://github.com/CARV-ICS-FORTH/frisbee

16

Fotis Nikolaidis

THANKS

Do you have any questions?

fnikol@ics.forth.gr

FORTH, Crete, Greece

Acknowledgement:
This work is supported by the
European Commission within the scope of:

ETHER (H2020-MSCA-IF-2019)
Grant Agreement ID: 894204

G
SIEHED
N I g

INSTITUTE OF COMPUTER SCIENCE MARIE CURIE

mailto:fnikol@ics.forth.gr

Backup Slides

Frisbee Primitives

24

Templates

Frisbee

Implement skeletons, exposing a bunch of parameters where dynamic
data will be injected to create multiple variants of a specification.

"loader":
(inputs: T y s ° Sane defaults
, parameters: : ® Placeholders for user data
! server: localhost
\ port: "6379")
Spec: T
(agents: T) a ° Sidecar containers.
___telemetry: [sysmon/container, ycsbmon/client 1! e Out-of-the-box monitoring
container:
name: app
image: aylei/go-ycsb:20201029
command:
addr={{.Inputs.Parameters.server}}:{{.Inputs.Parameters.port}} i S

mode={{.Inputs.Parameters.mode}}
recordcount={{.Inputs.Parameters.recordcount}}
offset={{.Inputs.Parameters.offset}}

Embedded scripting:
e Run functions on Inputs

F

S

Service

Frisbee

Create an instance of a templated service.

Type of Action

-. 'action: Service | Action Identifier

__

__ ; Dependencies to other Actions (DAG)

{fromTemplate: E
: templateRef redis/slave ,

Pointer to the Template skeleton

: { master: .service.master.any } ! Parameters for the skeleton

Cluster

Frisbee
Create multiple services that run in a shared context.
- action: Cluster
name: "loaders"
depends: { running: [master], success: [boot] }
cluster:
templateRef: ycsb-redis/loader
4o o= J
. - { server: .service.master.any, recordcount: "100000000", offset: "0" } i
0 { server: .service.master.any, recordcount: "100000000", offset: "100000000" } :—) Multlpl_e Services Wlth
:\ - { server: .service.master.any, recordcount: "100000000", offset: "200000000" } ., 2
i Different parameters.
failedServices: 3
kchedule:

_cron: "@every 2m"

Interval between the
creation of services.
26 (see changing patterns)

27

ChaOS Frisbee

Inject failures to simulate abnormal behaviors.

- action: Chaos
name: partitioni
depends: { running: [master, slave], success: [partition@], after: "ém" }

chaos:
:__t_Ysz_f_t_Ef"_r_t_if_if’_"______________,: Specify the fault.
arcticion:
G Current: kill, partition

Select the Chaos target
Select the Chaos duration.

After this time, the injected
fault will be retracted.

