
1

Dimitris Andreadis
Engineering Director

Quarkus Team, Red Hat

@dandreadis

Supersonic Subatomic Java
@ FOSSCOMM 2021

2

A stack to write Java apps

Cloud Native, Microservices, Serverless

3

4

What is the best way to write
Cloud Native Applications

in Java

In a Kubernetes Native world, size matters

5

● 1 monolith ≈ 20 microservices ≈ 200 functions
● Long running process(es), vs scale up/down, vs scale infinitely and back to 0
● Start up time and density become key

MONOLITH

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

MICRO
SERVICE

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

F FFFFFFFFF

6

Container platform

Node

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

NodeJS

Node

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Go Go

Node

HotSpot Heap

HotSpot Heap

HotSpot Heap

HotSpot Heap

Deployment density matters

7

Java frameworks suffer
from the same problems

8

They load way too many classes

They are way too dynamic / reflective

They perform a lot of initialization at Runtime

What is Wrong with Java Frameworks

@
@</>

Packaging
(maven, gradle…)

Build Time Runtime

How does a framework start?

@
@</>

Load and parse config files,
properties, yaml, xml, etc.

Build Time Runtime

How does a framework start?

@
@</>

Classpath scanning and
annotation discovery
Attempt to load class to
enable/disable features

Build Time Runtime

How does a framework start?

@
@</>

Build its metamodel
of the world.

Build Time Runtime

How does a framework start?

@
@</>

Start thread pools,
IO, etc.Build Time Runtime

How does a framework start?

14

The basic idea behind Quarkus:

@
@</>

RuntimeBuild Time

What if we perform Initialization at Build time?

Do the work once, not at each start

Get rid of all bootstrap classes

Less time to start, less memory needed

Less or no reflection nor dynamic proxies

16

Quarkus Build Process

Compile Provision
(curate)

Wire &
Assemble
(augment) AOT Native

Compilation

Hotspot Runnable & Image

Native Executable &
Image

app.jar frameworks Runnable java app native-app

17

JVM CI

Sulong (LLVM)

Truffle

Graal Compiler

Substrate VM

Java HotSpot VM

18

Not supported

The Dark Side

● Dynamic classloading
● InvokeDynamic & Method handles
● Finalizers
● Security manager
● JVMTI, JMX, native VM Interfaces

OK with caveats in usage

● Reflection (requires configuration)
● Dynamic proxy (requires configuration)
● JNI (requires configuration)
● Static initializers (eager)
● Lambda, Threads (Okay)
● References (mostly supported)

https://github.com/oracle/graal/blob/master/substratevm/LIMITATIONS.md

AOT is not That Simple

https://github.com/oracle/graal/blob/master/substratevm/LIMITATIONS.md

19

Hotspot optimized Quarkus App

⇒ ½ the RSS space
⇒ x5 boot speed

Native optimized Quarkus App

⇒ ⅕ the RSS space
⇒ x50 boot speed

How faster/smaller? Rule of Thumb

20

JIT - OpenJDK HotSpot

When to use which VM with Quarkus

High memory density requirements
High request/s/MB
Fast startup time

Best raw performance (CPU)
Best garbage collectors
Higher heap size usage

Known monitoring tools
Compile Once, Run anywhere
Libraries that only work in standard JDK

AOT - GraalVM native image

Highest memory density requirements
Highest request/s/MB

for low heap size usage
Faster startup time

10s of ms for Serverless

More consistent CPU performance
No JIT spikes
Simpler GC

21

Show me some Code!

Recap:

Why QUARKUS?

23

Benefit No. 1: Supersonic Subatomic Java

23Boot + First Response Time (in seconds)

REST + CRUD

Quarkus + AOT (via GraalVM)
28 MB

Quarkus + JDK (via OpenJDK)
145 MB

Traditional Cloud-Native Stack
209 MB

Boot + First Response Time (in seconds)

Quarkus + AOT (via GraalVM) 0.042 Seconds

Quarkus + JDK (via OpenJDK) 2.033 Seconds

Traditional Cloud-Native Stack 9.5 Seconds

Time to first response

24

A cohesive platform for optimized developer joy:

● Based on standards, but not limited

● Unified configuration

● Zero config, live reload in the blink of an eye

● Streamlined code for the 80% common usages,

flexible for the 20%

● No hassle native executable generation

● Live testing!

Benefit No. 2: Developer Joy

25

Benefit No. 3: Unifies Imperative and Reactive

● Combine both Reactive and imperative development in the same application
● Use the technology that fits your use-case
● Key for reactive systems based on event driven apps

@Inject
SayService say;

@GET
@Produces(MediaType.TEXT_PLAIN)
public String hello() {

return say.hello();
}

@Channel("kafka") Multi<String> events;

@GET
@Produces(MediaType.SERVER_SENT_EVENTS)
public Multi<String> events() {

return events;
}

26

Benefit No. 4: Best of Breed Frameworks & Standards

Quarkus provides a cohesive, fun to use,
full-stack framework by leveraging a growing list
of over fifty best-of-breed libraries that you love
and use. All wired on a standard backbone.

27

Benefit No. 5: Continuous Innovation

Beyond support for popular and de-facto
frameworks and standards, Quarkus is breaking
ground with constant innovation in new APIs and
implementations.

New Quarkus APIs & Impls

● Panache - Simplified Hibernate ORM

● Qute - New Templating Engine

● Funqy - Portable Functions API

● Mutiny - Reactive Programming Library

● RestEasy Reactive - Reactive JAX-RS variant

● Hibernate Reactive

● ...more to come

28

Want to learn more?

29

https://quarkus.io

@quarkusio

https://quarkusio.zulipchat.com

If you like Quarkus, star it on GitHub!
https://github.com/quarkusio/quarkus

https://youtube.com/quarkusio

